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Abstract

We propose a features decomposition method based
on wavelet transform with machine learning mod-
els for forecasting price movements in the stock
market. We augment the decomposition approach
improves the performance in forecasting short-
term stock movements as a novel approach that
uses high-frequency signals (noise) as predictors.
We collect popular three ETFs data sets, which
are SP500 (SPY), Dow Jones Industrial Average
(DIA), and NASDAQ (QQQ) recorded from Jan-
uary 1st, 2010 to January 1st, 2020. This approach
decomposes the feature signals from those data sets
into high and low frequencies, respectively. We
exploit the decomposed features in forecasting the
short-term stock movements using both traditional
and deep machine learning models. Extensive re-
sults are presented on MAE, RMSE, and accuracy
metrics for predicting either up or down in stock.
The results clearly indicate that the prediction re-
sults using the feature decomposition approach out-
perform those using original signals.

1 Introduction
Time series analysis has been an appealing domain in many
different fields such as economics, social sciences, medicine,
physical sciences, and finances despite being challenging
tasks. In recent years, accurately forecasting the movement
of stocks/indices has become an ever-increasingly issue in
investment/trading decision making. The goal was to ana-
lyze and understand historical data and potentially predict
future outcomes. As many trading platforms are becoming
commission-free, stock forecasting attracts interests not only
for financial institutions and hedge funds for also for retail
investors.

A well-known time series analysis method is the auto-
regressive moving average (ARIMA) model [1]. ARIMA has
been a successful model in various time series applications.
However, the model does not perform well on high dimen-
sional data, and other variances of the ARIMA model was
developed to tackle this problem such as the nonlinear au-
toregressive exogenous(NARX) models [2].

Due to the stock market being nonlinear, non-stationary,
and contains lots of noise, predicting stock movements is a
difficult task. Recently, machine learning models have be-
come popular due to their ability to solve complex and non-
linear problems such as in computer vision or natural lan-
guage processing [3][4][5]. As technology is growing with
a rapid speed, applications in the financial domain are shift-
ing toward incorporating machine learning methods into their
models.

Researchers in time series forecasting has been using tra-
ditional machine methods such as decision trees, random
forests, and support vector machines for more than 40 years.
With the recent developments of deep learning, many stud-
ies has been published and showed that deep learning models
outperform other machine learning counterparts [6] [7] [8] [9]
[10] [11]. The long short-term memory (LSTM) model is a
popular method in natural language application has been ex-
tended to time series application due to its forecasting nature
[12] [13]. The advantage of machine learning methods is that
it can learn the non-linear mapping between the features, and
the model outperforms traditional methods when inputs are
high-dimensional data. However, since many applications of
time-series forecasting only have a small amount of data, the
deep learning model tends to overfit. Thus, researchers come
up with hybrid methods to combine the best of both worlds
where traditional methods would learn the linear relationship,
and deep learning methods learn the residuals [14] [15].

We take another approach and theorize that for short-term
movement of the stock market, the high-frequency signals
and noise are the causes for the short-term fluctuation. To
tackle this challenge, we utilize wavelet transform as a signal
processing method to decompose the feature signals into high
and low-frequency signals, and model them separately using
both traditional and advanced machine learning methods. We
believe that using the high-frequency band signals would re-
sult in better performance in terms of predicting short-term
market movement.

Existing researches use the wavelet transform and other
signal processing methods to denoise the signal and some-
times results in an incremental improvement in forecasting
using low-frequency band signal as predictor [16] [17]. To
the best of our knowledge, we are the first to utilize high-
frequency band signals of the features for short-term stock
forecasting, and our proposed methodology yield a signifi-



cant improvement. The summary of our contribution is as
follows:

• Using 4-band wavelet transform to get one low-
frequency signal three different high-frequency signals.

• Better accuracy performance when using high-
frequency signals of features.

• Using frequency signals yields a better convergence
speed when training deep learning methods.

The remaining of the paper is as follows: Section 2 de-
scribes the proposed methodology, Section 3 presents results,
and followed by a conclusion.

2 Proposed Method
Since financial time series data contain noise, this makes fore-
casting task a very challenging task. In our research, we uti-
lize a signal processing method called wavelet transform to
decompose the time series data into low and high frequen-
cies. The low frequency contains the approximation of the
original signal, and the high frequencies represent the details
and noise.

Our proposed method mainly focus on decomposing the
features into low and high-frequency signals, and use off-the-
shelf machine learning models to each signal then compare
their performance. We believe that short-term market move-
ments tend to be influenced by the high-frequency signals
where the details and the noise cause the market fluctuation.

2.1 Features Decomposition
One of many signal processing methods is the Fourier Trans-
form. However, when apply Fourier Transform to get into the
frequency-domain, all of the time information is lost. Since
our data is time-series data and our signal is vary by time,
we must preserve the time information within the frequency-
domain.

Wavelet Transform is a solution for the aforementioned
challenge as it fulfills both conditions of decomposing the
signal into the frequency domain and preserve the time infor-
mation [18][17]. For our experiment, we construct a 4-Band
wavelet so that we can break down our features data. Below
is the filter banks for our 4-Band Wavelet:

α = [−0.067371, 0.094195, 0.405805, 0.567372,

0.567372, 0.405805, 0.094195,−0.067372]
(1)

β = [−0.094195, 0.067372, 0.567372, 0.405805,

−0.405805,−0.567372,−0.067372, 0.094195]
(2)

γ = [−0.094195,−0.067372, 0.56737,−0.405805,

−0.405805,−0.56737,−0.067372,−0.094195]
(3)

δ = [−0.067372,−0.094195, 0.405805,−0.567372,

0.567372,−0.405805, 0.094195, 0.067372]
(4)

where α is the low pass filter bank, and β, γ, δ are the high
pass filter banks such that they satisfy the following condi-
tions:

8∑
i=1

αi = 2 (5)

8∑
i=1

βi =

8∑
i=1

γi =

8∑
i=1

δi = 0 (6)

|α| = |β| = |γ| = |δ| (7)

α · β = α · γ = α · δ = β · γ = β · δ = γ · δ = 0 (8)

An example where S ∈ R4k(k ∈ N, k ≥ 2), a 4-Band
Wavelet Transform matrix T1 (See Fig. 1) is constructed by
shifting and wrapping around the filter banks. Let call our

Figure 1: An example of 42 × 42 Wavelet Transform matrix

wavelet matrix W ∈ R4k ×R4k and it is an orthonormal ma-
trix since the column and row vector of W form a set of the
orthonormal basis for R4k. To get into the frequency domain
(F ), we apply wavelet transformation to the signal by simple
perform a matrix multiplication:

F = W · S = [a d1 d2 d3]T ∈ R4k

where a = [a1, a2, a3, ..., a4k−1 ] is the low frequency com-
ponent, and di = [di,1, di,2, di,3, ..., di,4k−1 ](i = 1, 2, 3), are
the high frequency components. We separate each frequency
component by setting other frequency components to zero.

A = [a 0 0 0]T

D1 = [0 d1 0 0]T

D2 = [0 0 d2 0]T

D3 = [0 0 0 d3]T

We apply the inverse of wavelet transform to the frequency
component to get back to the signal domain.

Sa = WT ·A



Figure 2: Signal Representations by high/low frequency
components

Sdi = WT ·Di

so that S = Sa +
∑3

i=1 Sdi
where Sa approximate S and Sdi

represents the details and approximate noise of S. See Fig 2
for an example of this process.

2.2 Machine Learning Models
After we decompose our features into four sets of data, we
run each data set separately using both traditional machine
learning methods and deep learning methods to compare the
performance. Below are short descriptions of the methods
that are being used in this study:

Linear Regression: Linear Regression (LR) is to find the
curve that best fits the data with the combination of coef-
ficients and variables, which describes the relationship be-
tween the dependent and independent variable. The model
estimates the best curve by minimizing the residual sum of
squares between the labels provided by the data and the tar-
gets predicted by the linear approximation [19].

Decision Tree: A decision tree (DT) is constructed start
from the root node. Each node represents an output class and
every branch represents the process that leads to the decision
output, and the end node is the result [20].

Random Forest: Random forest (RF) is an extension of
Bootstrap aggregating by using decision tree where it helps
improves the stability accuracy of the algorithm. Due the the
fact the decision trees have a high variance and the model tend
to over-fit if the training data is complex and present irregular
pattern or contain a lot of noise [21] [10].

eXtreme Gradient Boosting: The eXtreme Gradient
Boosting (XGBoost) is an ensemble scalable end-to-end tree
boosting algorithm, which applies the boosting for weak
learners to convert them to strong learners[22]. The XGBoost
generates individual trees using multiple cores, organize each
data to minimize the lookup times in order to get better per-
formance and speed. The model has provided in-built cross-

validation ability, efficient handling of missing data, regular-
ization for avoiding over-fitting, catch awareness, tree prun-
ing, and parallelized tree building [23].

Support Vector Machine: Support Vector Machine
(SVM) is a non-parametric kernel-based regression method
used for extrapolating future values [24] [25] [26]. More
specifically, we shall be focusing on ε-SVR, a form of SVR in
which a hyperplane is constructed with a loss function within
precision. The SVR function can be expressed as below:

f(x) = wTφ(x) + b

where φ(x) maps data from the input space to the feature
space, w is a weight vector, and b is a bias constant. w and b
are estimated by satisfying as follows:

Minimizing: 1
2‖x‖

2

Subject to:

yi − (〈w, φ(xi)〉+ b) ≤ ε

(〈w, φ(xi)〉+ b− yi ≤ ε
where xi and yi represent input and target values obtained
from the training set. To address points outside this ε-
insensitive band, we introduce slack variables ξi, ξ∗i :

Minimizing: 1
2‖x‖

2 + C
∑n

i = 1(ξi + ξ∗i )
Subject to:

yi − (〈w, φ(xi)〉+ b) ≤ ε+ ξi

(〈w, φ(xi)〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≤ 0

The constant C > 0 is used to represent the trade off be-
tween model complexity and training error. After taking the
Lagrangian and optimizing with the above constraints, we are
left with:

f(x) =

n∑
i=1

(αi − α∗
i )K(xi, x) + b

where K(·, ·) is a kernel function, αi and α∗
i are nonzero La-

grangian multipliers and solutions to the dual problem.
Long Short Term Memory: The Long Short Term Mem-

ory(LSTM) contains special units called memory blocks in
the recurrent hidden layer. These memory blocks contain
memory cells with self-connections storing the temporal state
of the network in addition to special multiplicative units
called gates to control the flow of information. Each mem-
ory block in the original architecture contained an input gate
and an output gate. The input gate controls the flow of in-
put activation into the memory cell. The output gate controls
the output flow of cell activation into the rest of the network.
Later, the forget gate was added to the memory block. This
addressed a weakness of LSTM models preventing them from
processing continuous input streams that are not segmented
into sub-sequences. The forget gate scales the internal state
of the cell before adding it as an input to the cell through the
self-recurrent connection of the cell, therefore adaptively for-
getting or resetting the cell’s memory. In addition, the mod-
ern LSTM architecture contains peephole connections from
its internal cells to the gates in the same cell to learn the
precise timing of the outputs [5]. An LSTM network maps



a sequence of input vectors x = (x1, ..., xt) to a sequence
of output vectors y = (y1, ..., yt) by iteratively calculating
the network unit activation using the following equation from
t = 1...T :

Block input : zt = g(Wzxt + Vzyt−1 + bt)
Input gate : it = σ(Wixt + Viyt−1 + bi)
Forget gate : ft = σ(Wfxt + Vfyt−1 + bf )
Memory cell : ct = it � zt + ft � ct−1

Output gate : ot = σ(Woxt + Voyt−1 + bo)
Block output : yt = ot � g(ct)

where W and V denote input and recurrent weight matri-
ces, respectively (e.g. Wi the weight matrix from the current
input step to input gate i and Vi the recurrent weight matrix
from the output of the previous step to input gate i the b terms
denote bias weight vectors (e.g.bi is the input gate bias weight
vector), σ is the logistic sigmoid function, g(x) = tanh(x),
and i, f, o, c are output gate and memory cell activation vec-
tors, respectively, all of which are the same size as the cell
output activation vector m, � is the element-wise product of
the vectors.

Convolutional Network-Long Short Term Memory:
The convoultional Network-Long Short Term Memory
(CNN-LSTM) is one of variants of the LSTM model [27].
The CNN-LSTM utilizes the output of the convolutional net-
works as the input of the LSTM. A CNN network is formed
using convolutional layers which perform convolutional oper-
ation. The model plays a huge role in reducing the parameters
using filters, max-pooling, dropout and fully connected layers
so that the network only extract the most meaningful features
from input data.

3 Experiments
3.1 Data Collection
For our experiments, we are collecting three U.S. ETFs which
are SPY, DIA, and QQQ which track the major indices
of the SP 500, Dow Jones Industrial Average, and NAS-
DAQ respectively. We collect the daily quote data from Jan-
uary 1st, 2010 to January 1st, 2020 using Yahoo! Finance
API [28]. The features used in these datasets consist of
Open,High, Low,Close, V olume and technical indicator
computed fromClose prices which are Moving Average Con-
vergence Divergence (MACD), Bollinger bands (BBANDS),
Relative Strengh Index (RSI). Our target is the percentage
change of Close price for the next m days. Thus, the goal
is to use n-previous days of features to predict the percent-
age change of Close price for the next m days. The baseline
formulation before wavelet transforms is below:

Tm = f(X0, X−1, ..., X−(n−1), X−n)

Where Tm is the the percentage change of Close price for
the next m days, X is the set of all the features, and f(·) is
the non-linear mapping function. We then split then data in
the sequential order to training/testing sets. For this experi-
ment, 70% of the data was utilized as the training sets. The
remaining 30% was used for test sets. Technical indicators

are often used by many traders to identify the change of pat-
terns. The most popular ones are Moving Averages, Bollinger
bands, and Relative Strength Index. Many existing research
only use Open-High-Low-Close (OHLC) values, but we be-
lieve that technical indicators are types of feature engineering
methods, and they would be more useful than OHLC. Below
is the description of our features:

Features Description
MACD A trend-following momentum indicator.
RSI An oscillator that indicates the internal strength of a signal
BBAND Standard deviation level above/below a simple moving average
Volume Number of shares traded
High Highest price reached in the day
Low Lowest price reached in the day
Open The price of the stock opened at market
Close Close price adjusted for splits
Adj Close Adjusted close price adjusted for both dividends and splits

Table 1: List of features

3.2 Feature Importance
This paper utilizes the Random Forest Regression model to
estimate the importance of those features. The feature im-
portance analysis is used to determine which features are
more useful. It is calculated as the decrease in node impurity
weighted by the probability of reaching that node. The node
probability is calculated by the number of samples that reach
the node, divided by the total number of samples. The higher
the value the more important the feature. As shown in Fig.
3, the technical features are sorted as the most contributing in
forecasting for the stock movements.

Figure 3: The Feature Importance using the Random Forest Regres-
sion Model

From the figure above, all of the technical indicators we
use are more important compare to the OHLC features. Since
there are hundreds of technical indicators out there, it is im-
portant that we pick and design the right ones that best fit the
model. Further research will explore and include more tech-
nical indicators and external features.

3.3 Model Training
We train eight machine learning models using all stock fea-
tures including decomposed features, respectively; LR, DT,



RF, GB, XGB, SVR, LSTM, and CNN-LSTM. All param-
eters of the machine learning models are set by the default
values of the sklearn Library. The LSTM consists of four
LSTM layers with 50 units and four drop-outs of 0.2. The
drop-out is located after each LSTM layer. For CNN-LSTM,
three 1-dimensional CNNs which consist of 5 kernel sizes,
1 stride size, and one LSTM layer with 30 units, and one
drop-out of 0.2 are utilized. The filter size of the CNN layers
varies 64, 64, and 32 for each layer. As hyper-parameters, for
both LSTM and CNN-LSTM models, Adam optimizers are
selected with 0.001 of learning rate. They are trained using
Python3 on Google Colab.

3.4 Evaluation Metrics
We evaluate our approach by using multiple metrics: Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE),
and accuracy. The MAE method represents the difference
between the actual and the predicted values over the data set
by averaging the absolute difference. The RMSE is the error
rate by the square root of the mean squared error between
actual and predicted values.

MAE =

∑n
i=1 |ȳi − yi|

n

RMSE =

√√√√ 1

n

n∑
i=1

(ȳi − yi)2

where n is the number of data points, yi is the observed val-
ues, and ȳi is the predicted values.

This paper utilizes the accuracy as the binary classification,
which estimates either down or up of the stock movements.
We define the down as 0 when ȳi and yi are less or equal to
0, up as 1 and ȳi and yi are more than 0 like below equations.
The accuracy is calculated by the sum of true negative (TN)
and true positive (TP) over test sets. The TN is the number of
that ȳi and yi are correctly identified as down, and the TP is
the number of that ȳi and yiare correctly identified as up.

yi, ȳi =

{
0 yi, ȳi ≤ 0
1 yi, ȳi > 0

Accuracy =
True Negatives(TN) + True Positives(TP )

All Samples

3.5 Numerical Experiments
In this experiment, the input features for the baseline mod-
els are MACD, RSI, BBAND, and Volume from the feature
importance analysis. For our proposed method, we decom-
pose each feature into low and high-frequency signals using
wavelet transformation. We then run a series of statistical and
machine learning models for each set of features and calcu-
late their performance using the metrics mentioned earlier.

Predicting Price One Day Ahead
From our results (See Tables 2, 3, 4), high-frequency signals
2 perform the best when using Support Vector Regression.
For all three ETFs, the accuracy is above 72%, and the errors

(MAE and RMSE) are the lowest compare to other traditional
statistic and machine learning models. It is also worth point-
ing out that when using frequency signals, these models also
outperform the baseline models.

Predicting Price Multiple Days Ahead
To confirm our hypothesis that high-frequency signals have
a more significant influence on the short-term stock move-
ment, we run experiments for multiple days ahead. Below
are the comparisons using the best methods (Fig. 4). From

Figure 4: Accuracy of predicting multiple days ahead using
Support Vector Machine

the plot above, we learn that the performances of the models
that use high-frequency features drop when trying to predict
more than three days. The results gave us another confirma-
tion short-term stock movement is more influenced by noise
which is explained in the high-frequency signals. From the
earlier experiment using deep learning methods, the accuracy
for one-day movement prediction is almost a coin-toss. How-
ever, as we predict multiple days, the accuracy increases. We
do not have an explanation for this behavior; this is left for fu-
ture research. Also, noted that as we try to predict a long term
period, the errors increase due to a higher level of uncertainty.



Method Baseline Low Frequency Signals High Frequency Signals #1 High Frequency Signals #2 High Frequency Signals #3
MAE RMSE Acc.(%) MAE RMSE Acc.(%) MAE RMSE Acc.(%) MAE RMSE Acc.(%) MAE RMSE Acc.(%)

LR 0.544 0.816 48.32 0.542 0.804 55.57 0.550 0.824 57.99 0.496 0.723 69.53 0.527 0.772 64.16
DT 0.572 0.935 55.97 0.584 0.981 56.78 0.538 0.824 47.38 0.507 0.713 67.79 0.561 0.836 64.56
RF 0.848 1.247 49.80 0.805 1.165 53.15 0.758 1.100 52.48 0.701 0.995 65.37 0.736 1.073 58.12
GB 0.606 0.948 48.46 0.569 0.880 55.17 0.591 0.905 58.79 0.538 0.797 69.53 0.555 0.839 65.10

XGB 0.558 0.834 55.84 0.558 0.832 56.24 0.554 0.823 55.57 0.523 0.785 59.60 0.541 0.806 57.58
SVR 0.547 0.830 52.48 0.534 0.805 58.66 0.543 0.820 58.26 0.444 0.683 72.35 0.515 0.771 64.16

LSTM 0.539 0.813 52.37 0.550 0.805 49.19 0.537 0.805 50.97 0.507 0.735 50.55 0.523 0.761 52.59
CNN LSTM 0.551 0.841 55.11 0.573 0.877 52.73 0.572 0.876 53.05 0.704 1.409 50.75 0.557 0.854 52.11

Table 2: SPY RESULTS COMPARISON

Method Baseline Low Frequency Signals High Frequency Signals #1 High Frequency Signals #2 High Frequency Signals #3
MAE RMSE Acc.(%) MAE RMSE Acc.(%) MAE RMSE Acc.(%) MAE RMSE Acc.(%) MAE RMSE Acc.(%)

LR 0.556 0.834 47.38 0.549 0.822 57.99 0.562 0.842 55.57 0.518 0.750 69.66 0.537 0.785 65.37
DT 0.596 0.972 55.70 0.554 0.831 57.05 0.576 0.875 54.23 0.520 0.725 69.66 0.540 0.799 66.31
RF 0.811 1.185 52.08 0.764 1.114 55.84 0.802 1.105 52.89 0.668 0.949 64.56 0.698 0.979 60.94
GB 0.623 0.983 49.80 0.592 0.949 57.72 0.609 0.941 57.18 0.561 0.844 70.34 0.561 0.842 65.91

XGB 0.565 0.847 55.44 0.573 0.857 55.84 0.561 0.830 55.17 0.534 0.803 59.73 0.550 0.829 57.45
SVR 0.565 0.853 55.03 0.550 0.832 57.05 0.554 0.832 58.26 0.463 0.708 72.08 0.519 0.777 65.50

LSTM 0.554 0.832 52.26 0.556 0.821 49.67 0.560 0.841 52.76 0.554 0.779 49.92 0.524 0.780 50.79
CNN LSTM 0.579 0.919 53.01 0.578 0.849 49.15 0.571 0.873 51.29 0.680 1.366 50.22 0.557 0.850 52.14

Table 3: DIA RESULTS COMPARISON

Method Baseline Low Frequency Signals High Frequency Signals #1 High Frequency Signals #2 High Frequency Signals #3
MAE RMSE Acc.(%) MAE RMSE Acc.(%) MAE RMSE Acc.(%) MAE RMSE Acc.(%) MAE RMSE Acc.(%)

LR 0.755 1.096 50.07 0.542 0.804 55.57 0.550 0.824 57.99 0.496 0.723 69.53 0.527 0.772 64.16
DT 0.760 1.138 57.85 0.584 0.981 56.78 0.538 0.824 47.38 0.507 0.713 67.79 0.561 0.836 64.56
RF 0.940 1.320 50.87 0.805 1.165 53.15 0.758 1.100 52.48 0.701 0.995 65.37 0.736 1.073 58.12
GB 0.819 1.199 51.95 0.569 0.880 55.17 0.591 0.905 58.79 0.538 0.797 69.53 0.555 0.839 65.10

XGB 0.746 1.096 57.72 0.558 0.832 56.24 0.554 0.823 55.57 0.523 0.785 59.60 0.541 0.806 57.58
SVR 0.747 1.109 56.64 0.534 0.805 58.66 0.543 0.820 58.26 0.444 0.683 72.35 0.515 0.771 64.16

LSTM 0.736 1.087 57.99 0.541 0.800 51.21 0.547 0.806 49.38 0.487 0.710 51.48 0.522 0.761 51.82
CNN LSTM 0.796 1.244 57.69 0.586 0.916 49.72 0.541 0.825 51.98 0.660 1.277 49.49 0.585 0.884 49.94

Table 4: QQQ RESULTS COMPARISON

LSTM Convergence Speed
Another discovery we found while running experiments with
LSTM was that the training error converges much faster and
consistent when using the frequency-based signal. An ex-
ample comparison is between the results using original sig-
nals vs. high-frequency signal 2. From Fig. 5, we can ob-
serve that the convergence speed when training with high-
frequency signals 2 is faster. This can potentially be applied
to other applications where the data is noisy.

Figure 5: Training loss using original signal (left) vs. high
frequency signals 2 (right)

4 Conclusion & Future Work
In this paper, we study the use of wavelet transformation to
the features to decompose them into low/high-frequency sig-
nals and use them as input for our forecasting models. As
demonstrated in our experiments, high-frequency signals of

the features yield better short-term prediction results of the
three major (ETFs SPY, DIA, and QQQ) in terms of errors
and accuracy in comparison to using the original signals.
The experiment results show that short-term market move-
ments are caused by many external noises lie within the high-
frequency signals. Thus, being able to separate the noise for
the signal and use it to forecast the short-term stock market
could lead to higher capital gain when combined with a good
method of risk management.

Another discovery we have made while running the ex-
periment was that by using the low-frequency signal which
closely represents the original signal, the training of deep
neural networks converges much faster. This would poten-
tially be a potential data denoising method that can be applied
to other applications.

Future studies will include more data and features and ex-
plore the potential of machine learning methods. In the ex-
periment, we observe that traditional statistical and machine
learning methods outperform deep learning. The main rea-
son is our data is not big and complex enough to fully utilize
a deep machine learning model, and there is a potential for
overfitting. When including more features into the model,
feature selection/extraction will be also included to avoid the
curse of dimensional and reduce the cost of computation. Fur-
thermore, we would also like to include portfolio optimiza-
tion based on the proposed prediction methods.
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